Author: Ana Vidal González

Supervisors: Jesús Doval Gandoy & Francisco D. Freijedo Fernández

Applied Power Electronics Research Group, University of Vigo

15th May 2015

Dissertation submitted for the degree of Doctor of Philosophy at the University of Vigo "International Doctor Mention"

APET Applied Power Electronics Technology Research Group

Universida_{de}Vigo

Outline

- 1. Introduction
- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
- 5. Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications
- 6. Conclusions and Future Research

Outline

1. Introduction

- Background
- Objectives
- Review of Previous Research
- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
- 5. Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications
- 6. Conclusions and Future Research

Current Electric Grid

- ✓ Flexibility
- ✓ Bidirectionality

Pag.

 $\mathbf{2}$

Current Electric Grid ✓ Flexibility ✓ Bidirectionality × Problems to guarantee stability Grid codes Houses, Conventional Buildings, **Power Plants** Services Power electronic ENEPGY converters = interface. Renewable Energy Sources Pag. Factories Jniversida_{de}Vigo

 \mathcal{Q}

Background

Grid-Side VSC

- Tasks
 - Maintaining the dc link constant
 - Interaction with the grid (P & Q)

Implementation

- Modulation stage
- Multiple cascaded loops of linear controllers
 - Outer power/ dc-link voltage controllers
 - Inner current controllers
 - Appropriate power factor
 - Harmonic rejection
 - Disturbance rejection (faults)
 - Fast transient response

Accurate tuning of the regulators

Pag. 2**-**4

Background

Grid-Side VSC

- Tasks
 - Maintaining the dc link constant
 - Interaction with the grid (P & Q)
- Implementation
 - Modulation stage
 - Multiple cascaded loops of linear controllers
 - Outer power/ dc-link voltage controllers
 - Inner current controllers
 - Appropriate power factor
 - Harmonic rejection
 - Disturbance rejection (faults)
 - Fast transient response

Pag.

2-4

Main Objective of this Thesis

• A thorough analysis and design of the current control closed loop, oriented to an accurate tuning of the regulators is developed.

Pag.

1,4

Main Objective of this Thesis

• A thorough analysis and design of the current control closed loop, oriented to an accurate tuning of the regulators is developed.

Review of Previous Research

Plant Model for Current-Controlled Grid-Tied VSCs

Review of Previous Research

Plant Admittance

Pag. 5**-**11

Review of Previous Research

Equivalence Between L and LCL Filters

If $L_{\rm F} = L_{\rm CS} + L_{\rm GS}$ and $R_{\rm F} = R_{\rm CS} + R_{\rm GS}$

LCL filters behave as L ones at frequencies lower than approx. $f_{\rm res}$.

 $G_{\mathcal{L}_{\alpha\beta}}(s) \approx G_{\mathcal{L}\mathcal{C}\mathcal{L}_{\alpha\beta}}(s)$

Ana Vidal González

Review of Previous Research

Plant Model for Current-Controlled Grid-Tied VSCs

Ana Vidal González

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Introduction Review of Previous Research

Parameter Identification

- Precise knowledge of *L* and *R* is essential to guarantee the performance of the current loop (particularly when specifications are stablished in terms of transient response).
- Parameter uncertainties.
 - Non negligible impedance at the PCC.
 - Variation in the value of the different components with the working conditions.
 - Particularly significant in the parameters employed to model the losses (e.g., $R_{\rm C}$).
 - Errors in the measurements.

Ana Vidal González

APET, University of Vigo

Parameter Identification

- Precise knowledge of *L* and *R* is essential to guarantee the performance of the current loop (particularly when specifications are stablished in terms of transient response).
- Parameter uncertainties.
 - Non negligible impedance at the PCC.
 - Variation in the value of the different components with the working conditions.
 - Particularly significant in the **parameters** employed to **model the losses** (e.g., $R_{\rm C}$).
 - Errors in the measurements.

Ana Vidal González

APET, University of Vigo

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Introduction **Review of Previous Research**

Parameter Identification Methods

They can be classified attending to different criteria.

- How they are executed:
 - online
 - offline
- How they calculate the impedance:
 - **directly** from the **measurements** (v/i).
 - iteratively, by means of an adaptive observer.
 - Iterative minimization of the error (RLS, GPA, EKF, custom-made options....)
 - E.g., recursive closed-loop methods such as MRAS-based solutions.
- Whether they need a source of excitation:
 - NO \rightarrow passive
 - \rightarrow active (signal injection, change in the operating conditions...) YES

MRAS

ADAPTATION

Parameter Estimate

*Output*₁

Observer

Adjustable

Model

Pag. 11-14

Parameter Identification Methods

The following observations can be drawn from the available bibliography.

- There is no previous technique aimed at the converter equivalent loss resistance estimation.
- None of these methods is oriented to exactly the same objective as the one sought in this thesis: an accurate analysis and design of current loop transient response in grid-tied VSCs.

Pag. 12**-**14 Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Introduction Review of Previous Research

PI Controllers in SRF

• One of the most extended solutions.

Pag. 14**-**18

Universida_{de}Vigo

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Introduction Review of Previous Research

PI Controllers in SRF

• One of the most extended solutions.

Review of Previous Research

Resonant Controllers in Stationary Frame

(Vs PI Controllers in SRF)

- ✓ Open-loop infinite gain at the resonant frequency → ac currents can be regulated in stationary frame with zero steady-state error,
 - ✓ reducing the computational burden (Park transformations can be avoided),
 - showing lower sensitiveness to errors and noise in synchronization.
- ✓ Ability to regulate positive- and negative-sequence components of the same harmonic order ← equivalence to two identical PI regulators implemented in two SRFs simultaneously (one positive and one negative).
- × Complex schemes for distortion-free saturation.
- Kernet sensitiveness of their resonant frequency to the discretization technique.

Universidad Vigo

Review of Previous Research

Resonant Controllers in Stationary Frame

(Vs PI Controllers in SRF)

- ✓ Open-loop infinite gain at the resonant frequency → ac currents can be regulated in stationary frame with zero steady-state error,
 - reducing the computational burden (Park transformations can be avoided),
 - showing lower sensitiveness to errors and noise in synchronization.
- ✓ Ability to regulate positive- and negative-sequence components of the same harmonic order ← equivalence to two identical PI regulators implemented in two SRFs simultaneously (one positive and one negative).
- × Complex schemes for distortion-free saturation.
- Great sensitiveness of their resonant frequency to the discretization technique.

Pag. 18

Universidad Vigo

Review of Previous Research

PR Controllers

Proportional gain

- Influences: phase margin and f_{crossover}.
- Selection: well-stablished rules.

Integral gain:

- Influences: bandwidth around $hf_{1.}$
- Selection: guidelines (selectivity Vs fast dynamics).
 - × Qualitative guidelines.
 - × Ignoring the delay.
 - Not aimed at the optimization of the disturbance rejection transient response.

$$G_{\rm PR}(s) = K_{\rm P_T} + \sum_{h=1,5,7...} K_{\rm I_h} \frac{s}{s^2 + h^2 \omega_1^2}$$

Universida_{de}Vigo

Ana Vidal González

Pag. 18**-**21

Review of Previous Research

PR Controllers

Proportional gain:

- Influences: phase margin and $f_{\text{crossover.}}$
- Selection: well-stablished rules.

Integral gain:

- Influences: bandwidth around $hf_{1.}$
- Selection: guidelines (selectivity Vs fast dynamics).
 - × Qualitative guidelines.
 - × Ignoring the delay.
 - Not aimed at the optimization of the disturbance rejection transient response.

 $G_{\rm PR}(s) = \frac{K_{\rm PT}}{K_{\rm PT}} + \sum_{h=1,5,7...} K_{\rm I_h} \frac{s}{s^2 + h^2 \omega_1^2}$

Pag. 18**-**21

Review of Previous Research

PR Controllers

Proportional gain:

- Influences: phase margin and $f_{\text{crossover.}}$
- Selection: well-stablished rules.

Integral gain:

- Influences: bandwidth around $hf_{1.}$
- Selection: guidelines (selectivity
 Vs fast dynamics).
 - × Qualitative guidelines.
 - × Ignoring the delay.
 - Not aimed at the optimization of the disturbance rejection

transient response.

$$G_{\rm PR}(s) = K_{\rm P_T} + \sum_{h=1,5,7...} K_{\rm I_h} \frac{s}{s^2 + h^2 \omega_1^2}$$

Universida_{de}Vigo

Ana Vidal González

Review of Previous Research

VPI Controllers

$$G_{\text{VPI}_h}(s) = \frac{s^2 K_{\text{P}h} + s K_{\text{I}h}}{s^2 + h^2 \omega_1^2}$$
 IMC $G_{\text{VPI}_h}(s) = K_h \frac{s(sL+R)}{s^2 + h^2 \omega_1^2}$

- Influences: bandwidth around *hf*₁
- Selection: guidelines (selectivity Vs fast dynamics).
 - × Qualitative guidelines.
 - × Ignoring the delay.
 - Not aimed at the optimization of the disturbance rejection transient response.

Review of Previous Research

VPI Controllers

$$G_{\text{VPI}_h}(s) = \frac{s^2 K_{\text{P}h} + s K_{\text{I}h}}{s^2 + h^2 \omega_1^2}$$
 IMC $G_{\text{VPI}_h}(s) = K_h \frac{s(sL+R)}{s^2 + h^2 \omega_1^2}$

- K_h :
- Influences: bandwidth around hf₁.
- Selection: guidelines (selectivity Vs fast dynamics).
 - × Qualitative guidelines.
 - × Ignoring the delay.
 - Not aimed at the optimization of the disturbance rejection transient response.

Main Objective of this Thesis

• A thorough analysis and design of the current control closed loop, oriented to a precise tuning of the regulators is developed.

Outline

1. Introduction

- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
 - Analysis of the Current Closed-Loop Step Response
 - Developed Identification Method of the VSC Equivalent Loss Resistance
 - Experimental Results
 - Conclusion
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
- 5. Transient Response Evaluation of Stationary-Frame Resonant Current
Controllers for Grid-Connected ApplicationsΔ D F T
- 6. Conclusions and Future Research

If $\begin{cases} \widehat{R} \neq R \\ \& \\ \widehat{L} = L \end{cases} \xrightarrow{G''_{OL}(s)} = K \frac{sL + R}{APET}$ Universida_{de}Vigo

Pag. 29**-**34

29-34

Open-Loop Transfer Function

Ana Vidal González

APET, University of Vigo

Open-Loop Transfer Function

Ana Vidal González

Open-Loop Transfer Function

Ana Vidal González

Current Step Response in the Discrete-Time Domain

From the step response, having $i_q^{\widehat{R}=R}$ as a target, **two indicators** can be used to identify the actual *R*:

- the sign of the error area (IE) → whether *R* is under or overestimated,
- the area (IAE)

→ how large is the R mismatch

needs to be modified to weight the underestimate and overestimate cases \rightarrow WIAE.

Pag. 39**-**40 Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design Developed Identification Method of the VSC Equivalent Loss Resistance

Developed Method

• MRAS-based technique. Iterative process.

Pag. 35, 36 Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design Developed Identification Method of the VSC Equivalent Loss Resistance

Developed Method

- 1. Initialization
 - Auxiliary variables
 - Controller parameters $\widehat{R}(1), \widehat{L}=L_{\rm E}, K(k)=\widehat{R}(k)/L_{\rm E}$
 - Simulated plant parameters

$$L_{\rm sim} = L_{\rm F}, R_{\rm sim}(k) = \widehat{R}(k)$$

APET, University of Vigo
Developed Method

2. Command an i_q^* step to both loops at the same time.

APET, University of Vigo

Developed Method

2. Command an i_q^* step to both loops at the same time.

- 4. Calculation of two indicators $(WIAE_q, IE_q)$ from the error between the two curves.
- 5. Obtaining the new *R* estimate: • WIAE_a, IE_a $\rightarrow \hat{R}$

- 4. Calculation of two indicators $(WIAE_q, IE_q)$ from the error between the two curves.
- 5. Obtaining the new *R* estimate:

Developed Method

Pag.

36-41

go

Developed Method

Ana Vidal González

Other contents of Chapter 2

- **Theoretical examples** of **representative situations** with L and with LCL filters (P_{rated} , $V_{\text{LL}_{\text{rated}}}$, P_{level} , f_{sw} , f_{s} , i_{q}^* , L_{F} , R_{F} , R_{C}).
 - For all the cases, $R_{\rm C}$ matches quite well $R_{\rm C}^{\rm met}$ in few iterations.

Pag. 41**-**42

Implementation options:

- **Offline**, during a precommissioning stage.
- Online → PICCD must be adopted to regulate the positive-sequence fundamental component of the current.

Effect on the resistance estimate of uncertainties in the inductance value.

- The error made in \widehat{R} is **irrelevant**, even for $\widehat{L}/L=1.20$ and $\widehat{L}/L=0.80$.
- Pag. 44

Pag. 45**-**48

Universidad Vigo

• 2DOF PI controller case ("active resistance").

Although including an "active resistance" lowers to a certain point the sensitivity of the current loop response in the presence of R uncertainties, knowing R permits to further enhance the transient response, especially as R grows.

Experimental Setup

Experimental Tests

Case	P _{dc}	$f_{\rm sw}=f_{\rm s}$	$L_{ m F}$	R _F	i _d	i_q^*	v _{dc}	v _{PCC}	R ^{met} _C	k _{max}
Α	4.3 kW	10 kHz	5.9 mH	0.4 Ω	9.7 A	6.3 A	750 V	230 V	1.9 Ω	14
В	2.8 kW	10 kHz	5.9 mH	0.4 Ω	6.3 A	6.3 A	750 V	230 V	2.6 Ω	16
С	1.8 kW	10 kHz	5.9 mH	0.4 Ω	4.3 A	4.3 A	750 V	230 V	3.8 Ω	22
D	1.8 kW	5 kHz	9.6 mH	0.4 Ω	4.3 A	4.3 A	750 V	230 V	2.7 Ω	13
E	1.8 kW	2.5 kHz	11.7 mH	0.4 Ω	4.3 A	4.3 A	750 V	230 V	1.3 Ω	9

Pag. 50**-**54

Experimental Results

Experimental Test A

Conclusions of Chapter 2

- An incorrect estimation of the equivalent resistance in the plant model of the current control closed loop leads to a degraded behavior of it, different from the theoretical one (e.g., in terms of settling time and overshoot). Hence, its identification is essential for a rigorous analysis and design of this loop.
- A method to estimate the VSC equivalent loss resistance in specific working conditions has been proposed. Such resistance reflects the influence of the power losses on the plant model.
- The developed algorithm is based on the iterative minimization of a cost function that quantifies the error between the current control closed-loop step responses of the actual and the one including a simulated plant, with the current controllers tuned according to IMC. Thus, it is particularly oriented to the fulfillment of transient response constraints.

Pag. 55 Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs

Outline

- 1. Introduction
- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
 - Model and Control of the Current Loop
 - Analysis of the Current Control Closed Loop
 - Identification Method
 - Experimental Results
 - Conclusion
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
- 5. Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications **APE**T
- 6. Conclusions and Future Research

Current Loop

APET, University of Vigo

Influence of Mismatches on the Time-Domain Step Responses

Ana Vidal González

Influence of Mismatches on the Time-Domain Step Responses

Ana Vidal González

Influence of Mismatches on the Time-Domain Step Responses

Ana Vidal González

Influence of Mismatches on the Time-Domain Step Responses

Two indicators:

- the sign of the error area (IE)
 whether the parameter is under or overestimated,
- the area (IAE)
 how large is the parameter mismatch.

Ana Vidal González

Pag.

64-67

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

Developed Method

- Able to estimate **both parameters**: $L = L_F + \Delta L_F + L_{TH}$ and $R = R_F + R_C + R_{TH}$.
- **Both orthogonal components** of the plant output are considered.
- The inability of the axes decoupling to perform properly in the presence of parameter mismatches is exploited.
- If $\widehat{R} \approx R$ and $\widehat{L} \approx L$

Pag. 66, 67

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

Developed Method

- 1. Initialization \rightarrow extra variables
 - Auxiliary variables
 - Controller parameters

 $\widehat{R}(1), \widehat{L}(1), \underline{K}(k) = \widehat{R}(k)/\widehat{L}(k)$

Simulated plant parameters

$$L_{\text{sim}} = \hat{L}(k), R_{\text{sim}}(k) = \hat{R}(k)$$

Pag.

67-73

APET, University of Vigo

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

Developed Method

Ana Vidal González

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

Developed Method

At each iteration (within each commanded step), a correct estimate of both parameters is aimed.

L identification Vs R identification:

- WIAE_d = IAE_d for under and overestimate cases.
- Initial overestimation is also regarded.
- As the delay has an important influence on the axis cross coupling, T_s should be also considered when updating the new L estimate.

WIAE_d = IAE_d
WIAE_q IAE_q if IE_q ≥ 0
(IAE_q)² if IE_q < 0

$$\widehat{L}(k+1) = [1+L_{\text{F}}_under \cdot \Delta_{\text{d}}(k)] \cdot \widehat{L}(k)$$

 $\Delta_{\text{d}}(k) = f(\text{WIAE}_{\text{d}}(k), i_{\text{q}}^{*}, T_{\text{s}})$

Initialization Command an i_{a}^{*} step to both control loops Store the outputs Calculation of the WIAE_{*a*}, IE_{*a*} for a = d,qObtaining the new R Obtaining the new L

Pag. 67**-**73

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

Ana Vidal González

A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs Identification Method

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters								
A Method for Identification of the Equivalent L and R in the Plant Model of Current-Controlled Grid-Tied VSCs								
Identification Method								
Other contents of Chapter 3								
 Analysis of the root-locus diagrams with L and LCL filters. To evaluate the validity of the L admittance model for LCL filters. To study the loop stability. To establish a proper K gain for the method. To corroborate that a correct estimation of the plant parameters leads to a better transient response, in terms of overshoot and settling time. 	Pag. 60-64							
 Parameter tuning guidelines. 	Pag. 73, 74							
 Theoretical examples of representative situations with L and with LCL filters (<i>P</i>_{rated}, <i>V</i>_{LL_{rated}, <i>P</i>_{level}, <i>f</i>_{sw}, <i>f</i>_s, <i>i</i>_q*, <i>L</i>_F, <i>R</i>_F, <i>R</i>_C).} For all the cases, <i>R</i>_C matches quite well <i>R</i>^{met}_C in few iterations. Study of the regions of convergence as a function of the parameter mismatch 	Pag. 75-77							
 Implementation options: Offline, during a precommissioning stage. Online	Pag. 74, 75							
Universi	da _{de} Vigo							

Experimental Tests

Case (filter)	P _{dc}	${f_{ m sw}}{f_{ m s}}$	$L_{\rm F}$ ($L_{\rm GS}$ + $L_{\rm CS}$)	R	$\widehat{L}(1)$	$ \widehat{R}(1) = R_{\rm F} \\ (R_{\rm GS} + R_{\rm CS}) $	L ^{met}	R ^{met}	k _{max}
A (L)	4.3 kW	10 kHz 10 kHz	5.9 mH	2.3 Ω	$1.6L_{\rm F}$ $= 9.4 \text{ mH}$	0.4 Ω	5.9 mH	2.29 Ω	20
B (LCL)	4.3 kW	5 kHz 10 kHz	10.9 mH (5+5.9)	1.9 Ω	$1.6L_{\rm F}$ = 17.4 mH	0.45 Ω (0.05+0.4)	11 mH	1.88 Ω	15
C (L)	2 kW	5 kHz 5 kHz	9.5 mH	3Ω	$0.4L_{\rm F}$ $= 3.8 \text{ mH}$	0.4 Ω	9.8 mH	2.96 Ω	23
C (L)	2 kW	2.5 kHz 2.5 kHz	12.1 mH	1.7 Ω	$0.4L_{\rm F}$ $= 4.8 \text{ mH}$	0.4 Ω	12.6 mH	1.77 Ω	10

Pag. 79**-**84

Ana Vidal González

Ana Vidal González

APET, University of Vigo
Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design Conclusion

Conclusions of Chapter 3

- A **method** to **identify** the two parameters of the current loop plant time constant at certain working conditions has been proposed:
 - the equivalent inductance
 - the equivalent resistance

→ Thus, the **dynamics** of the actual loop **may be properly studied** and the **controller parameters** can be **precisely tuned**.

- The validity of modeling an LCL filter as an L one from the viewpoint of the current loop is analyzed in detail, as a function of the gain value. → It is demonstrated that the method is also valid when LCL filters are employed.
- The developed iterative algorithm works in closed loop, at the same sampling frequency as the rest of the control. It takes advantage of the current closed loop properties, and of the current controller itself to perform the estimation. Hence, it is particularly designed to satisfy timedomain specifications.

Pag. 81, 84

Outline

1. Introduction

- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
 - Introduction
 - Error Root-Locus Analysis for Transient Optimization
 - Design Study
 - Experimental Results
 - Conclusion
- 5. Transient Response Evaluation of Stationary-Frame Resonant Gerent Controllers for Grid-Connected Applications
- 6. Conclusions and Future Research

Framework

- In order to fulfill the dynamic GC requirements (LVRT and grid support), an enhanced transient response of the current loop is crucial, which can be achieved thanks to a precise tuning of the current controllers.
- Resonant regulators (such as PR ones) have been proved to be a good choice for grid connection.
- There is a lack of specific methods for PR controller tuning considering this demanding scenario.

Transient Assessment From the Error Signal Roots

- Methodology based on the root-locus inspection in the z-domain of the current error signal caused by transients:
 - Transients in the current reference $\Delta i^*(z)$
 - Transients in the disturbance $\Delta v_{PCC}(z)$

Discrete-time expression of the global error

$$E(z) = I^{*}(z) - I(z)$$

$$E(z) = E_{\Delta i^{*}}(z)|_{\Delta v \text{PCC}} = 0 + E_{\Delta v \text{PCC}}(z)|_{\Delta i^{*}} = 0$$

$$\downarrow^{i^{*}(k)} + e^{e(k)} + G_{C}(z) + z^{-1} + PWM + f^{-1} + G_{L}(s) + f^{-1}(z) + f^{-1}(z)$$

Pag. 89, 90

1st step:

Transient Assessment From the Error Signal Roots

- Methodology based on the root-locus inspection in the z-domain of the current error signal caused by transients:
 - Transients in the current reference $\Delta i^*(z)$
 - Transients in the disturbance $\Delta v_{PCC}(z)$

Transient Assessment From the Error Signal Roots

- Methodology based on the root-locus inspection in the z-domain of the current error signal caused by transients:
 - Transients in the current reference $\Delta i^*(z)$
 - Transients in the disturbance $\Delta v_{PCC}(z)$

Transient Assessment From the Error Signal Roots

Ana Vidal González

Transient Assessment From the Error Signal Roots

Ana Vidal González

Transient Assessment From the Error Signal Roots

Ana Vidal González

Transient Assessment From the Error Signal Roots

Transient Assessment From the Error Signal Roots

UniversidadeVigo

Transient Response	e Analysis and Design of Current-Controlled Grid-Tied Converters
Assessment and	Optimization of the Transient Response of PR Current Controllers for DPGSs
Design Stud	У
Tests	
<u>1st step:</u>	Discrete-time expression of the global error.
(<u>2nd step:</u>	Graphical representation of the error signal roots as a function of the controller gain \rightarrow Root loci.
<u>3rd step:</u>	Accurate prediction of the error waveform.
<u>4th step:</u>	Gain tuning.

Three control situations:

- A. PR controller tuned at f_1 . High sampling frequency ($f_s = 10 \text{ kHz}$).
- B. PR controller tuned at f_1 , f_5 and f_7 . High sampling frequency ($f_s = 10 \text{ kHz}$).
- C. PR controller tuned at f_1 . Low sampling frequency ($f_s = 2.5$ kHz).

Two transients:

- I. Transients in the current reference: a phase change of 90° in i^* . $\Delta i^*(z)$
- II. Transients in the disturbance: a type 'C' sag in $v_{PCC} \Delta v_{PCC}(z)$

Pag. 89, 90

Universida_{de}Vigo

A. PR Controller Tuned at f_1 . High f_s (10 kHz).

_A. PR Controller Tuned at f_1 . High f_s (10 kHz)

A. PR Controller Tuned at f_1 . High f_s (10 kHz)

Typical value $K_{I_1} = 2000$:

- *p*₁ & *p*₂ (dominant) slow and oscillating;
- $p_3 \& p_4$ faster than $p_1 \& p_2$, and also oscillating.

• Not a good choice.

Ana Vidal González

A. PR Controller Tuned at f_1 . High f_s (10 kHz)

Ana Vidal González

A. PR Controller Tuned at f_1 . High f_s (10 kHz)

Ana Vidal González

A. PR Controller Tuned at f_1 . High f_s (10 kHz)

$K_{I_1} = 100000:$

Pag. 93**-**96

- p_1 slower and almost cancelled by a zero;
- p_2 faster and nonoscillating;
- **p**₃ & **p**₄ dominant and very oscillating.

Ana Vidal González

A. PR Controller Tuned at f_1 . High f_s (10 kHz).

A. PR Controller Tuned at f_1 . High f_s (10 kHz)

tracking one.

Universida_{de}Vigo

B. PR Controller Tuned at f_1, f_5 and f_7 . High f_s (10 kHz).

<u>**3rd step:</u>** Analysis of the effects of the root position on the transient response.</u>

 $K_{I_1} = 17645 + two different values of K_{I_5} and K_{I_7}$.

New zeros at the unit circle boundary:

- Impossible to place the new poles far from the unit circle boundary and at the same time, next to those zeros.
- Difficult to draw conclusions from the root loci.

Accurate prediction of the error waveform

Partial-fraction expansions: poles & residues.

Overshoot & settling time.

APET. KistersidadeVigo

Ana Vidal González

B. PR Controller Tuned at f_1 , f_5 and f_7 . High f_s (10 kHz)

<u>**3**rd</u> step: Analysis of the effects of the root position on the transient response.

 $K_{I_1} = 17645 + \text{two different values of } K_{I_5} \text{ and } K_{I_7}.$

New zeros at the unit circle boundary:

- Impossible to place the new poles far from the unit circle boundary and at the same time, next to those zeros.
- Difficult to draw conclusions from the root loci.

Accurate prediction of the error waveform.

Partial-fraction expansions: poles & residues.

Overshoot & settling time.

B. PR Controller Tuned at f_1, f_5 and f_7 . High f_s (10 kHz)

<u>**3rd step:</u>** Analysis of the effects of the root position on the transient response.</u>

 $K_{I_1} = 17645 + two different values of K_{I_5} and K_{I_7}$.

New zeros at the unit circle boundary:

- Impossible to place the new poles far from the unit circle boundary and at the same time, next to those zeros.
- Difficult to draw conclusions from the root loci.

Accurate prediction of the error waveform.

Partial-fraction expansions: poles & residues.

Settling time & overshoot.

miversidadevigo

C. PR Controller Tuned at f_1 . Low f_s (2.5 kHz)

Gain tuning.

- To favor the settling time of the disturbance rejection response.
- $K_{I_1} = 5262 \rightarrow p_1 = p_2$ dominant and nonoscillating.

Compared to the corresponding ones at 10 kHz, p₃ & p₄ have more impact at 2.5 kHz, due to the delay effect.

Ana Vidal González

Experimental Setup

- VSC working as a rectifier.
- Control implemented in dSpace DS1104.
- The Pacific 360-AMX 3-ph linear power source is used to supply the ac voltages and to program the voltage sags.

 $R_{\rm F}$

PWM

v_{PCCabc} %

PLL

DIGITAL PLATFORM

(dSpace DS1104)

- i_q^* is set manually to perform transients in the current reference. ΓE
- $i_{\rm d}^*$ is set through an outer loop which controls $v_{\rm dc}$.

Pag.

100, 101

Universida deviso

A. PR Controller Tuned at f_1 . High f_s (10 kHz).

Ana Vidal González

A. PR Controller Tuned at f_1 . High f_s (10 kHz).

Ana Vidal González

B. PR Controller Tuned at f_1, f_5 and f_7 . High f_s (10 kHz)

Ana Vidal González

C. PR Controller Tuned at f_1 . Low f_s (2.5 kHz)

 $K_{I_1} = 5262$

Pag. 106, 107

APET

Universida_{de}Vigo

Conclusions of Chapter 4.

- A methodology to assess and optimize the transient response of PR controllers has been developed. It is based on the accurate modeling (including the delay effects) and study of the error signal roots caused either by
 - Transients in the current reference
 - **Changes** in the **disturbance** (voltage sags at the PCC).
- Different significant situations considering very demanding scenarios have been analyzed and tested.
- Optimal gains result from a tradeoff between the two types of transients, in favor of the most critical one, which is the disturbance one.

Pag. 106**-**108

It is concluded that precisely tuned PR controllers are a suitable option to fulfill the GC requirements in terms of transient response.

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications

Outline

1. Introduction

- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
- 5. Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications
 - Introduction
 - Design Study
 - Experimental Results
 - Conclusion
- 6. Conclusions and Future Research

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Introduction

Framework

- **VPI controllers** are **alternative resonant regulators** to PR ones.
- Some works prove they could provide higher stability margins than PR ones and hence, more damped responses.
- Studies about the utilization of VPI controllers for current control in renewable energy applications are lacking. There is not a methodology for VPI controller tuning oriented to the transient response optimization of command tracking and disturbance rejection.

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Introduction

Framework

- **VPI controllers** are **alternative resonant regulators** to PR ones.
- Some works prove they could provide higher stability margins than PR ones and hence, more damped responses.
- Studies about the utilization of VPI controllers for current control in renewable energy applications are lacking. There is not a methodology for VPI controller tuning oriented to the transient response optimization of command tracking and disturbance rejection.

Pag. 109, 110

• Application to VPI controllers of the methodology described in Chapter 4.

Comparison between PR and VPI controllers.

Universidad Vigo

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Design Study

Methodology & Tests

<u>1st step:</u>	Discrete-time expression of the global error.
<u>2nd step:</u>	Graphical representation of the error signal roots as a function of the controller gain \rightarrow Root loci.
<u>3rd step:</u>	Accurate prediction of the error waveform.
<u>4th step:</u>	Gain tuning.

Four control situations:

A.	Resonant filters tuned	l at f	h. High	sampling	; frequency	$(f_s = 10 \text{ kHz}).$	

- B. Resonant filters tuned at f_1 , f_5 and f_7 . High sampling frequency ($f_s = 10 \text{ kHz}$).
- C. Resonant filters tuned at f_1 . Low sampling frequency ($f_s = 2.5 \text{ kHz}$).
- D. Effect of a feed-forward path.

Two transients: ΔPET I. Transients in the current reference: a phase change of 90° in i^* . $\Delta i^*(z)$ II. Transients in the disturbance: a type 'C' sag in v_{PCC} . $\Delta v_{PCC}(z)$

Ana Vidal González

Pag.

110-112

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Design Study

A. VPI Controller Tuned at f_1 . High f_s (10 kHz)

<u>2nd step:</u>

Graphical representation of the error signal roots as a function of the controller gain \rightarrow Root loci.

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Design Study

A. VPI Controller Tuned at f_1 . High f_s (10 kHz)

<u>Comparing with the analysis of the PR controller:</u>

- Same number of roots (numerators and Pag. denominators of the same order). 112-115
- Just the roots that depend on the controller numerator are different $\rightarrow p_1, p_2, p_3 \& p_4$
 - $p_1 \& p_2$ (dominant poles): behave similarly with an increasing gain.
 - $p_3 \& p_4$: behave differently.

PR controller \rightarrow **Complex VPI** controller **> Real**; **plant dynamics cancellation**

A. VPI Controller Tuned at f_1 . High f_s (10 kHz)

A. Resonant Controllers Tuned at f_1 . High f_s (10 kHz).

Pole position (decay rate)

- *p*₁ & *p*₂ (dominant poles) → slower with the VPI controller
- $p_3 \& p_4 \rightarrow p_3$ slower and p_4 faster with the VPI controller

Residues in the reference change (damping)

- *p*₁ & *p*₂(dominant poles) → bigger
 residues with the VPI controller
- $p_3 \& p_4 \rightarrow$ smaller residues with the VPI controller

<u>Residues in the disturbance change</u> (damping)

- $p_1, p_2 \& p_3 \rightarrow$ larger residues with the VPI controller
- *p*₄ → smaller residues with the VPI controller
 Universidade Vigo

B. Resonant Controllers Tuned at $f_1, f_5 \& f_7$. High f_s (10 kHz)

- Adding more resonant filters with high gains affects the position of the dominant poles $p_1 \& p_2$, as well as those of $p_3 \& p_4$ with both controllers \rightarrow Smaller values of K_{I_1} and K_1 are needed to achieve $p_1 = p_2$.
- For $p_1, p_2, p_3 \& p_4$, the conclusions are the same as in the previous case.
- For **the additional poles**, the **differences** are **marginal**.

C. Resonant Controllers Tuned at f_1 . Low f_s (2.5 kHz)

- As f_s decreases, the delay effects caused by the discrete-time implementation become more noticeable. The discretization method applied to the resonant controllers affects the system dynamics. → The best option is assessed.
- More similarities in the root loci of both controllers at this f_s
 - The dominant poles p₁ & p₂ are slightly faster with the PR controller → slightly faster reference tracking and disturbance rejection responses.
 - Smaller residues of the dominant poles with the PR controller \rightarrow smaller overshoot.
 - Initial high-frequency oscillations in the **reference change** with the PR (A, p) is a larger residues of $p_3 \& p_4$ \rightarrow it will increase the overshoot.

APET, University of Vigo

Universida_{de}Vigo

Pag. 116-118

Pag.

115, 116

B. Resonant Controllers Tuned at $f_1, f_5 \& f_7$. High f_s (10 kHz)

- Adding more resonant filters with high gains affects the position of the dominant poles $p_1 \& p_2$, as well as those of $p_3 \& p_4$ with both controllers \rightarrow Smaller values of K_{I_1} and K_1 are needed to achieve $p_1 = p_2$.
- For $p_1, p_2, p_3 \& p_4$, the conclusions are the same as in the previous case.
- For **the additional poles**, the **differences** are **marginal**.
- C. Resonant Controllers Tuned at f_1 . Low f_s (2.5 kHz)
- As f_s decreases, the delay effects caused by the discrete-time implementation become more noticeable. The discretization method applied to the resonant controllers affects the system dynamics. → The best option is assessed.
- More similarities in the root loci of both controllers at this f_{s} .
 - The dominant poles p₁ & p₂ are slightly faster with the PR controller → slightly faster reference tracking and disturbance rejection responses.
 - Smaller residues of the dominant poles with the PR controller \rightarrow smaller overshoot.
 - Initial high-frequency oscillations in the reference change with the PR controller (due to larger residues of p₃ & p₄) → it will increase the overshoot.

Universida_{de}Vigo

Pag. 116**-**118

Pag.

115, 116

Experimental Setup

- VSC working as a rectifier.
- Control implemented in dSpace DS1104.
- The Pacific 360-AMX 3-ph linear power source is used to supply the ac voltages and to program the voltage sags.
- i_q^* is set manually to perform transients in the current reference. PET
- i_d^* is set through an outer loop which controls v_{dc} .

Universida_{de}Vigo

A. Resonant Controllers Tuned at f_1 . High f_s (10 kHz)

Ana Vidal González

APET, University of Vigo

B. Resonant Controllers Tuned at f_1 , f_5 and f_7 . High f_s (10 kHz)

Ana Vidal González

APET, University of Vigo

C. Resonant Controllers Tuned at f_1 . Low f_s (2.5 kHz)

Ana Vidal González

D. THD Analysis

Ana Vidal González

APET, University of Vigo

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controller <i>f</i> _s	f h	h THD	Reference change		Disturbance change		
	n		Overshoot	Set. time	Overshoot	Set. time	
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms

Experimental Results

Controller fs	£	h	1.	I.	TUD	Referenc	e change	Disturban	ce change
	n		Overshoot	Set. time	Overshoot	Set. time			
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms		
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms		
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms		
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms		
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms		
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms		

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controllor	f	f h	la la	1.	h	тир	Referenc	e change	Disturban	ce change
Controller	$Controller J_s n$	IND	Overshoot	Set. time	Overshoot	Set. time				
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms			
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms			
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms			
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms			
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms			
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms			

Controllon	£	h	1.	TUD	Referenc	e change	Disturban	ce change
Controller	controller J_s <i>n</i>	n	IND	Overshoot	Set. time	Overshoot	Set. time	
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms	
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms	
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms	
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms	
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms	
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms	

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controller f _s	£	h		Reference change		Disturbance change	
	J _s			Overshoot	Set. time	Overshoot	Set. time
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controller <i>f</i> _s	£	£			Referenc	e change	Disturban	ce change
	п	IND	Overshoot	Set. time	Overshoot	Set. time		
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms	
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms	
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms	
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms	
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms	
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms	

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controllor	Controller $f_{\rm s}$ h	h	h	L		Reference change		Disturbance change	
Controller		n	IND	Overshoot	Set. time	Overshoot	Set. time		
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms		
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms		
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms		
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms		
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms		
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms		

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controllor	£	f h	h	h		Reference change		Disturbance change	
Controller	Difference J _s	n		Overshoot	Set. time	Overshoot	Set. time		
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms		
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms		
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms		
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms		
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms		
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms		

Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications Experimental Results

Controller f _s	f h		Reference change		Disturbance change		
	Js			Overshoot	Set. time	Overshoot	Set. time
VPI	10 kHz	1	8.29 %	14 %	17 ms	8.6 A	27 ms
PR	10 kHz	1	2.65 %	28 %	9 ms	4.4 A	20 ms
VPI	10 kHz	1, 5, 7	1.10 %	49 %	16 ms	8.8 A	26 ms
PR	10 kHz	1, 5, 7	0.92 %	57 %	12 ms	4.4 A	19 ms
VPI	2.5 kHz	1	4.75 %	13 %	16 ms	12.1 A	28 ms
PR	2.5 kHz	1	4.63 %	40 %	10 ms	10.9 A	22 ms

• Effect of a Feed Forward on the Disturbance Rejection Response

• At high $f_s(10 \text{ kHz}) \rightarrow \text{significant}$ improvement in overshoot & settling time.

- At low $f_s(2.5 \text{ kHz}) \rightarrow$ improvement in overshoot & insignificant improvement in settling time.
- Effect of the PLL on the Disturbance Rejection Response
 - In principle, it might have a certain impact: transient in v_{dc} error in the outer loop & transitory increase in the error.
 - Evaluation \rightarrow scarce influence.

Pag. 121-130

Universidade Vigo

Conclusions of Chapter 5.

- This chapter studies the convenience of VPI controllers use when fast transient responses are demanded:
 - For new reference tracking
 - For disturbance rejection
- The transient response of the current loop is assessed by means of the error signal roots following the methodology proposed in the previous chapter.
- Different significant situations considering very demanding scenarios have been analyzed and tested for the VPI controller and compared with those obtained with the PR one.
 - At high f_s, VPI controllers lead to longer settling times than PR ones, for both reference and disturbance changes and also to a higher THD.
 - At $f_s = 2.5$ kHz, the root loci of both controllers, and accordingly, their transient responses, present more similarities, although the PR regulator is faster. The THD is similar.
- However, as the sampling frequency decreases, the VPI controller becomes an interesting alternative to the PR one: its transient response can be optimized at lower sampling frequencies without risking the stability.

Pag.

130-132

Outline

1. Introduction

- 2. Equivalent Loss Resistance Estimation of Grid-Tied Converters for Current Control Analysis and Design
- 3. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters
- 4. Assessment and Optimization of the Transient Response of Proportional-Resonant Current Controllers for Distributed Power Generation Systems
- 5. Transient Response Evaluation of Stationary-Frame Resonant Current Controllers for Grid-Connected Applications
- 6. Conclusions and Future Research
 - Conclusions
 - Future Research

Transient Response Analysis and Design of Current-Controlled Grid-Tied Converters Conclusions and Future Research

Conclusion

Conclusions

- It is demonstrated that a precise knowledge of *L* and *R* (which includes the converter losses) is essential to guarantee the performance of the current loop (particularly when specifications are stablished in terms of transient response). Closed-loop identification methods, able to work either offline or online, are developed. These methods are also valid when LCL filters are employed.
- A methodology to assess and optimize the transient response of PR controllers is proposed, oriented to fulfilling the LVRT (disturbance rejection) and grid-support (command tracking) requirements from GCs. A criterion for gain tuning is developed according to the observations.
- A comparison between the transient response of PR and VPI controllers is presented, aimed at evaluating the suitability of the latter in grid-tied applications. Their THD is also assessed, as well as the effects of the feedforward and of the PLL on the disturbance rejection response.

Pag. 133, 134

Future Research

- Study of the VSC equivalent loss resistance at different frequencies, from the control point of view. Analysis from the control viewpoint of the correlation between the VSC equivalent loss resistance and the voltage drops caused by dead times, the voltage drops in the transistors, etc.
- Development of a tuning method to optimize the transient response of the current loop at very low ratios between the sampling and fundamental frequencies. The complete transfer function of the plant admittance in case of LCL filters would be employed.
- Analysis of the different effects (positive and negative) of adding an "active resistance" in order to improve the disturbance rejection capability.
- Study of the interactions between the outer control of the PCC voltage and the inner current one.

Pag. 134, 135

Author: Ana Vidal González

Supervisors: Jesús Doval Gandoy & Francisco D. Freijedo Fernández

Applied Power Electronics Research Group, University of Vigo

15th May 2015

Dissertation submitted for the degree of Doctor of Philosophy at the University of Vigo "International Doctor Mention"

Universida_{de}Vigo